Skip to main content
Log in

Statistical analysis for 134Cs and 137Cs radioactivity risk levels modeling

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

After the Fukushima Dai-Ichi Nuclear Power Plant (FDNPP) accident, 134Cs and 137Cs were spread widely into the environment. Spatial distribution maps giving radiocesium activities in contaminated soils for post-accident risk modeling were obtained using the Kriging method. We used Generalized extreme-value distribution, Lognormal probability distribution (PDF) and Weibull PDFs for risk assessment of the data. Root mean square error values and coefficient of determination (R2) were calculated for each distribution function. Weibull PDF was found to be more successful in modeling 134Cs and 137Cs activities.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. IAEA (2015) The Fukushima Daiichi Accident Report by the Director General

  2. Kinoshita N, Sueki K, Sasa K et al (2011) Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc Natl Acad Sci U S A 108:19526–19529. https://doi.org/10.1073/pnas.1111724108

    Article  Google Scholar 

  3. TEPCO (2012) List of documents concerning the responsestatus at Fukushima daiichi nuclear power station and Fukushima daini nuclearpower station. In: TEPCO Tokyo Electr. Power Co, Inc

  4. Wu J, Hu X, Ma J et al (2017) Analysis of ground deposition of radionuclides under different wind fields from the Fukushima Daiichi accident. Nat Hazards 87:533–544. https://doi.org/10.1007/s11069-017-2777-7

    Article  Google Scholar 

  5. TEPCO (2011) Estimation of radioactive materials releasedto the atmosphere in the accident of the Fukushima Daiichi Nuclear Power Plant

  6. Minoura K, Yamada T, Hirano S, Sugihara S (2014) Movement of radiocaesium fallout released by the 2011 Fukushima nuclear accident. Nat Hazards 73:1843–1862. https://doi.org/10.1007/s11069-014-1171-y

    Article  Google Scholar 

  7. Jasiulionis R, Rozkov A, Vycinas L (2006) Radionuclides in the ground-level air and deposition in the Ignalina Npp region during 2002–2005

  8. Ashraf MA, Akib S, Maah MJ et al (2014) Cesium-137: radio-chemistry, fate, and transport, remediation, and future concerns. Crit Rev Environ Sci Technol 44:1740–1793. https://doi.org/10.1080/10643389.2013.790753

    Article  CAS  Google Scholar 

  9. Characteristics of Caesium-134 and Caesium-137|除染技術情報なび|日本原子力研究開発機構. https://c-navi.jaea.go.jp/en/background/remediation-following-major-radiation-accidents/characteristics-of-caesium-134-and-caesium-137.html. Accessed 2 Jul 2020

  10. Morino Y, Ohara T, Nishizawa M (2011) Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys Res Lett 38:1–7. https://doi.org/10.1029/2011GL048689

    Article  CAS  Google Scholar 

  11. Chino M, Nakayama H, Nagai H et al (2012) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the fukushima daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48:1129–1134. https://doi.org/10.1080/18811248.2011.9711799

    Article  Google Scholar 

  12. Imanaka T, Hayashi G, Endo S (2015) Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1. J Radiat Res 56:i56–i61. https://doi.org/10.1093/jrr/rrv074

    Article  Google Scholar 

  13. Melgunov MS, Pokhilenko NP, Strakhovenko VD et al (2012) Fallout traces of the Fukushima NPP accident in southern West Siberia (Novosibirsk, Russia). Environ Sci Pollut Res 19:1323–1325. https://doi.org/10.1007/s11356-011-0659-1

    Article  CAS  Google Scholar 

  14. Povinec P, Hirose K, Aoyama M (2013) Fukushima accident: radioactivity ımpact on the environment. Elseiver, Amsterdam

    Book  Google Scholar 

  15. Watanabe T, Tsuchiya N, Oura Y et al (2012) Distribution of artificial radionuclides (110mAg, 129mTe, 134Cs, 137Cs) in surface soils from Miyagi Prefecture, northeast Japan, following the 2011 Fukushima Dai-ichi nuclear power plant accident. Geochem J 46:279–285. https://doi.org/10.2343/geochemj.2.0205

    Article  CAS  Google Scholar 

  16. Yasunari TJ, Stohl A, Hayano RS et al (2011) Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci U S A 108:19530–19534. https://doi.org/10.1073/pnas.1112058108

    Article  Google Scholar 

  17. Bilici S, Bilici A, Külahcı F (2019) Transport modeling of 137Cs in soil after Fukushima Dai-Ichi Nuclear Power Plant accident by point cumulative semi-variogram method. Environ Earth Sci 78:1–10. https://doi.org/10.1007/s12665-019-8232-1

    Article  CAS  Google Scholar 

  18. Bilici S, Külahcı F, Bilici A (2019) Spatial modelling of Cs-137 and Sr-90 fallout after the Fukushima Nuclear Power Plant accident. J Radioanal Nucl Chem 322:431–454. https://doi.org/10.1007/s10967-019-06713-4

    Article  CAS  Google Scholar 

  19. Song JH (2018) An assessment on the environmental contamination caused by the Fukushima accident. J Environ Manage 206:846–852. https://doi.org/10.1016/j.jenvman.2017.11.068

    Article  CAS  Google Scholar 

  20. Külahci F (2011) A risk analysis model for radioactive wastes. J Hazard Mater 191:349–355. https://doi.org/10.1016/j.jhazmat.2011.04.083

    Article  CAS  Google Scholar 

  21. Külahcı F, Bilici A (2019) Advances on identification and animated simulations of radioactivity risk levels after Fukushima Nuclear Power Plant accident (with a data bank): a critical review. J Radioanal Nucl Chem 321:1–30. https://doi.org/10.1007/s10967-019-06559-w

    Article  CAS  Google Scholar 

  22. Mikami S, Maeyama T, Hoshide Y et al (2015) Spatial distributions of radionuclides deposited onto ground soil around the Fukushima Dai-ichi Nuclear Power Plant and their temporal change until December 2012. J Environ Radioact 139:320–343. https://doi.org/10.1016/j.jenvrad.2014.09.010

    Article  CAS  Google Scholar 

  23. Saito K, Tanihata I, Fujiwara M et al (2015) Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 139:308–319. https://doi.org/10.1016/j.jenvrad.2014.02.014

    Article  CAS  Google Scholar 

  24. Franic Z, Lokobauer N (1993) 90sr and 137cs in Pilchards from the Adriatic Sea. Arch Ind Hyg Toxicol 44:293–301

    CAS  Google Scholar 

  25. Tang TY, Tai JH, Yang YJ (2000) The flow pattern north of Taiwan and the migration of the Kuroshio. Cont Shelf Res 20:349–371. https://doi.org/10.1016/S0278-4343(99)00076-X

    Article  Google Scholar 

  26. Porcelli D, Andersson PS, Baskaran M, Wasserburg GJ (2001) Transport of U- And Th-series nuclides in a Baltic Shield watershed and the Baltic Sea. Geochim Cosmochim Acta 65:2439–2459. https://doi.org/10.1016/S0016-7037(01)00610-X

    Article  CAS  Google Scholar 

  27. Wong GTF, Hung CC (2001) Speciation of dissolved iodine: ıntegrating nitrate uptake over time in the oceans. Cont Shelf Res 21:113–128. https://doi.org/10.1016/S0278-4343(00)00086-8

    Article  Google Scholar 

  28. Taira T, Hatoyama Y (2011) Nuclear energy: nationalize the Fukushima Daiichi atomic plant. Nature 480:313–314. https://doi.org/10.1038/480313a

    Article  CAS  Google Scholar 

  29. Giannakopoulou F, Haidouti C, Chronopoulou A, Gasparatos D (2007) Sorption behavior of cesium on various soils under different pH levels. J Hazard Mater 149:553–556. https://doi.org/10.1016/j.jhazmat.2007.06.109

    Article  CAS  Google Scholar 

  30. U.S. EPA (2015) Particle transport of radionuclides following a radiological incident. EPA/600/R-15/113. U.S. Environmental Protection Agency, Washington, DC

  31. Ratliff K, Mikelonis A, Duffy J (2020) Characterizing cesium sorption in freshwater settings using fluvial sediments and characteristic water chemistries. J Environ Manage 253:109688. https://doi.org/10.1016/j.jenvman.2019.109688

    Article  CAS  Google Scholar 

  32. Fernandez B, Salas JD (1999) Return perıod and risk of hydrologic events. I: mathematical formulation. J Hydrol Eng 4:297–307. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:4(297)

    Article  Google Scholar 

  33. Fernandez B, Salas JD (1999) Return period and risk of hydrologic events. II: applicatıons. J Hydrol Eng. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:4(308)

    Article  Google Scholar 

  34. Douglas EM, Vogel RM, Kroll CN (2002) Impact of streamflow persistence on hydrologic design. J Hydrol Eng 7:220. https://doi.org/10.1061/(ASCE)1084-0699

    Article  Google Scholar 

  35. Şen Z (1999) Simple risk calculations in dependent hydrological series. Hydrol Sci J 44:871–878. https://doi.org/10.1080/02626669909492286

    Article  Google Scholar 

  36. Külahci F, Şen Z (2009) Risk assessment of distribution coefficient from 137Cs measurements. Environ Monit Assess 149:363–370. https://doi.org/10.1007/s10661-008-0209-6

    Article  CAS  Google Scholar 

  37. Trangmar BB, Yost RS, Uehara G (1985) Application of geostatistics to spatial studies of soil properties. In: Advances in agronomy. Academic Press, pp 45–95

  38. Isaaks EH, Srıvastava RM (1989) Applied geostatistics. Oxford University Press, Oxford

    Google Scholar 

  39. Park S, Fowler JW, Mackulak GT et al (2002) D-optimal sequential experiments for generating a simulation-based cycle time-throughput curve. Oper Res 50:981–990. https://doi.org/10.1287/opre.50.6.981.347

    Article  Google Scholar 

  40. Van Den Boogaart KG, Schaeben H (2002) Kriging of regionalized directions, Axes, and Orientations I. Directions and Axes. Math Geol 34:479–503. https://doi.org/10.1023/A:1019849125046

    Article  Google Scholar 

  41. Rouhani S, Wackernagel H (1990) Multivariate geostatistical approach to space-time data analysis. Water Resour Res 26:585–591. https://doi.org/10.1029/WR026i004p00585

    Article  Google Scholar 

  42. Davis JC (2002) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  43. Deutsch C V., Journel AG (1998) GSLIB: geostatistical software library and user’s guide

  44. Şen Z (2009) Spatial modeling principles in earth sciences. Springer, Dordrecht

    Book  Google Scholar 

  45. Leadbetter MR, Lindgren G, Holger R (1983) Extremes and related properties of random sequences and processes. Springer, New York

    Book  Google Scholar 

  46. Coles S (2004) An ıntroduction to statistical modeling of extreme values. Springer, London

    Google Scholar 

  47. Harald C (1962) Random variables and probability distributions. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

This research was funded by Firat University Scientific Research Projects Management Unit (Grant No.: FF.12.25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Bilici.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilici, A., Bilici, S. & Külahcı, F. Statistical analysis for 134Cs and 137Cs radioactivity risk levels modeling. J Radioanal Nucl Chem 326, 1047–1064 (2020). https://doi.org/10.1007/s10967-020-07399-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07399-9

Keywords

Navigation